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Quiz | Results

Quiz 1 Score Histogram
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Score

Mean: 62.1, std dev: 6.6, max: 89

his sort of distribution Is actually typical for this course!
Letter grades are determined based on a curve

The curve for Section K4 will be different from the A4/B4 sections since Erick
is grading everything for K4 (the other sections are graded by other TA’s & me)

Extremely rarely do students fail my class (usually this is due to cheating)



Last Time:
Automatically Choosing k, the Number of Clusters

Simple strategy:

(1) compute a score for each k you're willing to try
(2) use whichever k achieves the best score

* There Is no single best score function

* Frtting k-means/GMMs is in general random
(for example, in the CH index demo, if we don't set
random_state, then the CH indices computed will be different
every time we run the code, and the best k could change!)

There are other clustering methods that do not require specifying
the number of clusters (e.g., DP-means, DP-GMM, many variants of
hierarchical clustering, density-based clustering)
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DP-means

 Big picture: DP-means has a parameter controlling the size (radius)
of clusters rather than number of clusters

* |f your problem can more naturally be phrased as having cluster sizes
that should not be too large, can use DP-means instead of k-means

Real example. Satellite image analysis of rural India to find villages

Fach cluster is a village: don't know how many villages there are total but
rough upper bound on radius of village can be specified

=> DP-means can provide a decent solution!



Density-based Clustering
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Some Last Remarks on Clustering

Demo for DP-GMM & DBSCAN are at the end of prev. lecture’'s demo

What about clustering unstructured data?
» Covered this Friday April 8 in Adelaide’s recitation

« CMU Pittsburgh students: watch the video recording of the Adelaide
recrtation next week (since CMU Prittsburgh has Spring Carnival)

Important takeaway: ultimately, you have to decide on which clustering
method and number of clusters make sense for your data

* After you run a clustering algorithm, make visualizations to
interpret the clusters in the context of your application!

* Do not just blindly rely on numerical metrics (e.g., CH index)



Is clustering structure enough?



(Flashback) GMM with k Clusters

Cluster | Cluster k
Probability of generating a Probability of generating a
point from cluster | = point from cluster k = g
Gaussian mean = g Gaussian mean = g
(Gaussian covariance = 23 (Gaussian covariance = 2.y

How to generate points from this GMM:

|. Flip biased k-sided coin (the sides have probabilities 71, ..., 7g)

---------------------------------------------------------------------------------------

2 et Z be the side that we got (it Is some value |, ..., k)

3.5Sample | point from the Gaussian for cluster Z

------------------------------------------------------------------------------------------

Fach data point has a single true cluster assignment Z
& 1s generated from the Gaussian for cluster Z



In reality, a data point could have “mixed”
membership and belong to multiple clusters



Topic Modeling

Text
Fach document is part of multiple topics

Fach topic consists of a bunch of regularly co-occurring words

(example topics: 'sports”, “medicine”’, “movies’, “finance™)

Movie recommendation
Fach user Is part of multiple “clusters’/topics

Fach cluster/topic consists of a bunch of movies
(example clusters:“sci-fi epics’, “cheesy rom-coms”)

Health care

Fach patient’s health records explained by multiple “topics”

Fach topic consists of co-occurring “events”
(example topics: "heart condition™, “severe pancreatitis”)



Topic Modeling

Text
Fach document is part of multiple topics

Fach topic consists of a bunch of regularly co-occurring words
(e \\\\\ A +A~Ar~i~~fama At R o A A ~A A b n Ay AR “nhﬂv\ﬂ/:”
In all of these examples:
 Fach data point (a feature vector) is part of
multiple topics
» FEach topic corresponds to specific feature
values In the feature vector likely appearing

Health care
Fach patient’s health records explained by multiple “topics”

Fach topic consists of co-occurring “events”
(example topics: "heart condition™, “severe pancreatitis”)



Latent Dirichlet Allocation (LDA)

* For text
* A generative model

* |Input:“document-word” matrix, and pre-specified # topics k

Word
| P . d

2
Document

n

i-th row, j-th column: # times word j appears in doc i

» Output: what the k topics are (details on this shortly)



LDA Generative Model Example

Topic
weather food
Alice’s text OI ------------- 0.9 :
Document = Armemmeeemsssesseieeeeo
Bob's text 0.5 0.5
Word
cold hot apple pie
, weathe 03 0./ 00 00
Topic | gooooooooooorororononoonn
food 0.1 0.3 05 0.l

--------------------------

----------------------------

---------------------------

---------------------------

---------------------------
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weather food
Alice’s text 0. 0.9
Document e e ‘
Bob's text OS _____________ O 5 :
Word
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0.3 0./ 00 00
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LDA Generative Model Example

Topic
weather food
Alice’s text 0. 0.9
Document

Bob's text 0.5 0.5
‘ Word ~

cold hot apple pie
' . weather 103 07 00 00
. Topic plyiybiuiylyislybtuiylyilblgtylvlyirbugl sl
: food ! 0.3 05 O.]:

--------------------------

--------------------------------------------

|, Flip 2-sided coin for doc i ) . .
______________________________ ‘ Learning the topics
2. It weather:lip 4-sided coin for weather: means figuring out
f food:iflip 4-sided coin for food:

these 4-sided coin
probabillities

---------------------------



LDA Generative Model

-------------------------

N N : OV

. 8 8 "

S S I & W :

Doc. | I l " Topic | 5
: Goal: Learn these :

: | distributions ;

Doc. 2 . lopic 2 :

N I

DA models each word in document i to be generated as:

* Randomly choose a topic Z (use topic distribution for doc i)

* Randomly choose a word (use word distribution for topic Z)



LDA

* For text
* A generative model

* |Input:“document-word” matrix, and pre-specified # topics k

Word
| P . d

2
Document

n

i-th row, j-th column: # times word j appears in doc i

* Output: the k topics’ distribution of words



LDA

Demo



